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Abstract—The Dynamic Capacitated Arc Routing Problem
(DCARP) aims at re-routing the service paths of vehicles for
the capacitated arc routing problem when one or more dynamic
events happen during vehicles’ services and influence the current
schedule. For example, a road may become congested or even
not accessible anymore because of a traffic accident, which is
likely to deteriorate the quality of the current schedule. Since
a new DCARP instance in a DCARP scenario is similar to the
previous DCARP instances, knowledge of the old optimisation
process for the old DCARP instance is capable of promoting
the dynamic optimisation for the new DCARP instance. How-
ever, the existing optimisation algorithms for solving DCARP
never considered such knowledge but re-optimised the DCARP
instance directly once dynamic events happen. Therefore, in
this project, we targeted to make use of the knowledge of the
old optimisation process and proposed a dynamic optimisation
framework with historical solutions adaptation heuristic (DO-
HSAH) for speeding up the DCARP’s dynamic optimisation.
The DO-HSAH includes two different strategies to cope with
two kinds of DCARP instances: instances caused only by cost-
changing events and instances caused by both cost-changing and
task-changing events. In the empirical studies, a state-of-the-art
DCAREP optimisation algorithm was embedded into the proposed
DO-HSAH framework, and the new algorithm was evaluated
in a set of testing DCARP scenarios. The experimental results
demonstrated that the DO-HASH could significantly improve the
performance of dynamic optimisation for the DCARP.

I. INTRODUCTION

The Capacitated Arc Routing Problems (CARP) is a clas-
sical and important combinatorial optimisation problem with
a range of applications in the real world [1], [2]. It aims at
assigning a fleet of vehicles with limited capacities starting
from a depot to serve a set of edges with demands in a graph.
Algorithms for solving CARP are targeted to schedule vehicles
with limited capacities for serving a set of tasks on a map with
minimal travelling costs.

However, in real-world applications, dynamic events are
common when vehicles are in service, i.e., when a solution
is partially executed, thus influencing the vehicles’ follow-
on service. For example, a road may be closed due to an
accident, or new tasks may emerge during the vehicles’
service. When that happens, a new graph, i.e. a new DCARP
instance, is formed, in which vehicles would stop at different
locations, labelled as outside vehicles, with various amounts
of remaining capacities. As a result, the current schedule may
become inferior or even feasible.

Therefore, DCARP optimisation aims to update the service
schedule when the quality of the original schedule deteriorates

due to some dynamic events in an uncertain environment.
When dynamic events occur, the remaining tasks, the map’s
information, and the status of all service vehicles at that time
compose a DCARP instance. DCARP optimisation is mainly
targeted to re-optimise the DCARP instance and obtain an
updated schedule for the new environment. When dynamic
events happen, vehicles are usually located at different points
and have served different tasks resulting in different remain-
ing capacities. Therefore, besides CARP requiring the total
demand being served by a vehicle not to exceed a vehicle’s
capacity, a DCARP instance has two additional constraints,
i.e., (1) some vehicles are outside and have to start from these
outside positions and (2) the remaining capacities of these
outside vehicles are different from those of vehicles in the
depot. These two constraints cause the algorithms for solving
static CARP are not applicable to dynamic CARP directly.

The dynamic CARP was seldom considered in the literature,
and they almost all focused on specific dynamic events in the
literature. DCARP, to the best of our knowledge, was first
investigated in [3] when considering the salting route optimi-
sation problem. Liu et al. [4] defined some possible changes in
DCARP and proposed a benchmark generator for DCARP [5].
Furthermore, Marcela et al. [6] deal with the rescheduling for
DCARP, which considered the failure of vehicles, and Wasin et
al. [7] considered new tasks in DCARP. In our previous work,
we proposed a novel generalised optimisation framework with
a virtual-task strategy for solving DCARP [8]. The framework
deals with the outside vehicle as a virtual task so that the meta-
heuristic algorithms designed for static CARP are also capable
of solving DCARP instances.

However, as far as we know, current works always opti-
mise the DCARP instance from scratch once a new DCARP
instance is generated. Since the new DCARP instance is
generated based on the old DCARP instance and the ex-
ecutable solution, the new DCARP instance is similar to
the old DCARP instance. Therefore, the solutions obtained
for the old DCARP instance can be used in the new envi-
ronment, potentially promoting the optimisation for the new
DCARP instance. Therefore, this project mainly considers
such knowledge transfer in the DCARP optimisation, and our
contributions are as follows:

« To the best of our knowledge, it is the first time to sys-
tematically make use of the historical solutions obtained
in the old environment to promote the optimisation of
DCARP.

o The dynamic events are considered progressively from
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only cost-related dynamic events (OC) to both cost-
related and task-related dynamic events (CT). A dynamic
optimisation framework based on the proposed historical
solution adaptation heuristic (Do-HASH) is proposed.

o The HASH includes two different strategies, i.e., HASH-
OC and HASH-CT, for the DCARP instances with the
above two types of dynamic events. In HASH, the his-
torical solutions are re-constructed based on the concept
of the building block. For DCARP instances with new
tasks, HASH contains an insertion strategy to adapt the
historical solutions to the new DCARP instances.

« A state-of-the-art meta-heuristic algorithm was embedded
into the proposed DO-HASH framework, and the new
algorithm was evaluated on a set of generated DCARP
scenarios. The empirical results demonstrated that our
DO-HASH framework significantly improves the perfor-
mance of the original algorithm.

The remainder of this paper is organised as follows. Section
II introduces the problem definition as well as some related
work in dynamic vehicle routing problems. Section III intro-
duces the proposed DO-HASH framework and the details of
HASH strategy. Section IV presents experimental results for
evaluating the performance of DO-HASH. Conclusions and
future work are provided in Section V.

II. BACKGROUND

A. Problem description

The DCARP scenario is composed of a series of DCARP
instances: Z = {lo, I1, ..., I, ..., [ps }. Each DCARP instance
corresponds to a problem state, which contains all the informa-
tion regarding the state of the map and vehicles involved in the
routing problem, and highly depends on the previous instance
and the solution’s execution. The initial problem instance
Iy is a conventional static CARP, in which all vehicles are
located at the depot having the same full capacities. We can
obtain an initial solution in I; and execute this solution in
the graph. During the execution, some dynamics [4] happen
at random points in time when vehicles are in service, thus
changing the problem instance and potentially requiring a new
better solution. Vehicles then continue to serve tasks from the
positions they had stopped (stop points). DCARP terminates
when all tasks are served, and all vehicles have returned to
the depot. In a DCARP scenario, the key objective is to
achieve a schedule cost, which should be as low as possible for
each DCARP instance. Let’s first focus on the mathematical
formulation for one DCARP instance.

The map for any DCARP instance I,,, is provided as a graph
G. Suppose the map of a DCARP instance I,,, is represented
by G = (V,A) with a set of vertices V' and arcs (directed
links) A. There is a depot vy € V in the graph, which contains
vehicles that are not yet serving any tasks. The set A is given
by

A= {< Vi, V5 > |’Ui,1)j € V}
where for each arc u, ie. < v;,v; >€ A, v; is the head

vertex and v; is the tail vertex. A given arc < v;,v; > only
exists if it is possible to traverse from vertex v; to vertex

v; without passing through other vertices. Each arc u in the
graph is associated with a deadheading (traversing) cost de(u),
a serving cost sc(u) and a demand dm(u). The deadheading
cost of an arc means the cost that the vehicle just traverse
this arc without serving while the serving cost is the cost
when vehicles serve this arc. A subset R C A contains all
arcs required to be served in the graph. The arc u € R is
named as ‘task‘ and has a positive demand dm(u) > 0. For
convenience, we use ¢ to represent a task, and use an arc ID
for identification.

The DCARP instance I only contains vehicles at the depot.
As for DCARP instances I,,(m > 0), in addition to vehicles
that are currently at the depot, there may also be outside
vehicles with remaining capacities. These are vehicles that
had already started to serve tasks when a dynamic event
occurs. Suppose there are N,., vehicles in total with a
maximum capacity @ at the depot and Ny, (Noy < Nyen)
outside vehicles with remaining capacities {q1, ¢, ...,qn,, }-
The stop points (locations) of the outside vehicles are labelled
as OV = {vy,vs,...,vn,,}. The optimisation of DCARP
aims to reschedule the remaining tasks with the minimal cost
considering both outside and depot vehicles..

A DCARP solution S = {ry,r2,...,;7n,,,..., ")} contains
K routes, where the routes r; to 7y, start from locations that
outside vehicles located while routes 7y, 41 to 7k start from
the depot. Each route can be represented by three components:
starting vertex, an ordered list of tasks (arc IDs) and the final
depot. Therefore, a given route r; can be expressed as r; =
(Vk te1s T 25 -y Lty » V0 ), Where the vehicle starts from stop
location v and returns to the depot vy, whereas [ denotes
the number of tasks served by route r;. For route 75, where
k > Ny, vk equals to vg. This representation is very easy to
be converted to an explicit route by connecting two subsequent
tasks using Dijkstra’s algorithm so that the route cost can be
calculated. In addition, a DCARP solution has to satisfy three
constraints which are the same as constraints in static CARP:

« Each route served by one vehicle must return to the depot.

« Each task has to be served once.

o The total demand for each route served by one vehicle
cannot exceed the vehicle’s capacity Q.

Due to the different remaining capacities for outside vehicles,
the capacity constraint is required to be formulated for each
outside vehicle separately. As a result, the objective function
and the constraints for DCARP are given as follows:

K
Min TC(S) =Y RC,,
k=1

K
s.t. Zlk =N,
k=1

ey iy 7 hyin, fOr all (k1,i1) # (Ko, i2) (1)
Ik

> dm(t) < g, Yk € {1,2,..Noy }

=1

ly

S dmtes) < Q.Vk € {Noy +1,.., K}

=1



REPORTS FOR IEEE GRADUATE STUDENT RESEARCH GRANT

where N; is the number of tasks and RC,, denote the total
cost of route 7 and is computed according to Eq. 2:

RC,,, = mdc(vy, taily, , ) + mde(heady, ,, ,vo)+

U, —1 U, )

Z mdc(heady, ,,taily, , )+ Z sc(tr,;)

i=1 i=1
where head;, tail; denotes the head and tail vertices of the
task, mdc(v;,v;) denotes the minimal total deadheading cost
traversing from node v; to node v;, and sc(tx ;) denotes the
serving cost of task ?j ;. The first two constraints in Eq. (1)
guarantee that all tasks are served only once and the other two
constraints are formulated to satisfy the capacity constraint.

B. Related work

In the literature, there are two related but different research
topics which target the (re)scheduling of vehicles in dynamic
environments: Dynamic CARP (DCARP) and dynamic vehicle
routing problem (DVRP). DCARP focuses on serving tasks
which are the arcs in the graph, while DVRP focuses on
serving vertices. For dynamic optimisation for VRP, many
different algorithms and strategies have been proposed in the
literature.

In DVRP, the dynamic strategies for speeding up the op-
timisation process when it has new DVRP instances are also
very important. Many works have focused on this topic in
the literature [9]. There are three main dynamic strategies in
DVRP as follows:

1) Increasing diversity after a change: complete restart and
partial restart. The main approach for increasing diversity
after a change is to insert new solutions/individuals
into the population. The complete restart means that all
solutions are re-generated for the new optimisation, and
parameter restart will maintain some old solutions. The
repair operator should be used first if the old solution is
not infeasible after the change.

2) Maintaining diversity during execution: introduce immi-
grant ants randomly or use the best from the previous
environment in the new environment.

3) Memory schemes: promising solutions for the old envi-
ronment are stored in the memory and are reused when
dynamic events happen.

It is worth mentioning that the optimisation algorithm in most
works for solving DVRP is the Ant Colony Optimisation
(ACO) algorithm. These three strategies are applied to ACO
to help with dynamic optimisation.

The ACO was originally proposed to solve the TSP inspired
by the foraging behaviours of some ant species [10]. The ants
will deposit pheromones on the ground to mark favourable
paths. When dynamic events happen, the pheromone in edges
remains for dynamic problems and can also be used for
new environments. The pheromone matrix contains encrypted
information about the characteristics of good solutions for
these problems. In particular, pairs of customers which are
visited in sequence in good solutions will have high values in
the corresponding entries of the pheromone matrix [11].

Many strategies for dealing with DVRP have been pro-
posed to handle dynamic events. For example, for cost-related

dynamic events, Eyckelhof et al. [12] inherited the graph’s
pheromone matrix and adjusted a few edges’ pheromones
to increase the exploration ability. Most works focused on
new-task dynamic events in the literature. For settings of
pheromone when adding new tasks in the DVRP, the restart
strategy is the most intuitive approach, which assigns an initial
pheromone value to the new task [11]. In addition, according
to the position of new tasks, n-strategy and 7-strategy are
proposed to adjust the pheromone values of new tasks [13].
Recently, it also has special learning-based strategies for
handling new tasks. For example, Xiang et al. [14] proposed
a pairwise proximity-based ant colony algorithm for DVRP,
which learns the pair preference of tasks and applies such
pair preference in ACO when constructing the new solution.

III. HISTORICAL SOLUTIONS ADAPTATION HEURISTIC
BASED DYNAMIC OPTIMISATION FRAMEWORK

As stated above, we are targeted to make use of the
historical solutions in the dynamic optimisation to promote
the optimisation for new DCARP instances. Thus, a HASH-
based dynamic optimisation framework is proposed, and its
structure is presented in Figure 1.

Dynamic events detection

HSAH-OC HSAH-CT

Start: Static CARP
Main algorithm

T
Initialization

T
Initialization

Deployment

Best Solution

Fig. 1: The structure of HSAH-based dynamic CARP optimi-
sation

The dynamic optimisation starts from the static CARP
instance. The meta-heuristic optimisation algorithm can be
used to obtain the best solution for the static CARP instance,
and the best solution is deployed to serve the pre-defined
tasks. Then, once some dynamic events happen, the control
centre can detect the type of dynamic events and generate
a new DCARP instance according to the occurred dynamic
events. If the dynamic events only contain the cost-changing
events (OC), such as road congestion, the HASH-OC strategy
will be used to help the dynamic optimisation. On the other
hand, if dynamic events also contain the added-task or deleted
task events (CT), the HSAH-CT strategy will be applied to
promote dynamic optimisation. As a result, a new solution
will be obtained after the dynamic optimisation, and it will be
deployed to the environment to update the service plan of all
vehicles. Finally, the dynamic optimisation will stop until all
tasks have been served.

In our framework, the HSAH strategy adapts the historical
solutions and makes these new solutions as the initial solutions
for the meta-heuristic algorithm. For OC and CT events,
HSAH contains two different strategies, as HASH-OC and
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HASH-CT, and both these two strategies are based on a
new concept of building block. Therefore, in the following
subsections, we will introduce the concept of the building
block first, and the details of HASH-OC and HASH-CT are
followed.

A. Building Block

The new DCARP instance is generated based on the old
DCAREP instance and the executable solution. Moreover, the
solutions except the best solutions obtained in the optimisation
process for old DCARP instances, i.e., the historical solu-
tions, can not be directly used for the new DCARP instance.
However, the information contained in these solutions can be
extracted and reused. For example, it is highly probable that
two adjacent tasks in the high-quality historical solutions still
are adjacent in the best solutions for the new DACRP instance.
Therefore, such sequence patterns can be extracted to construct
the feasible solution for the new DCARP instance.

In this project, the building block is used to describe such
sequence patterns. Since the CARP solution is a set of routes
and the route is composed of a sequence of tasks, if a sub-
sequence of tasks in the old CARP solution still remains in
the new DCARP instances, i.e., the tasks in a sub-sequence in
the route are still the tasks required to be served, we combine
this sub-sequence of tasks into a building block. We assume
the sequence of these tasks will still remain in the high-quality
solutions of the new DCARP instances.

The pseudo-code of constructing building blocks from a
historical solution is presented in Algorithm 1. Each building
block has five properties, including the block’s task sequence,
the block’s head node and tail node, and the block’s cost and
demand. In each historical solution, we detect each consecutive
sub-sequence of tasks and make them a building block. The
head node and tail node of this building block are the head
and tail nodes of this task sub-sequence. The cost and demand
of the building block are equal to the total costs of serving this
task sub-sequence and the total demands of all tasks in this
sub-sequence. If one task in the route that both its predecessor
task and successor task have been served or deleted in the
new DACRP instance, we also make this independent task a
building task. Finally, all detected building blocks formed into
a set of building blocks for the solution construction.

B. HSAH-OC

For DCARP instances only cost-changing dynamic events
(DCARP-OC), the HSAH-OC strategy would be used to
generate a new population of solutions for the new DCARP
instances from an archive of historical solutions. The pseudo-
code of HSAH-OC is presented in Algorithm 2.

The archived solutions AS, which are the final population of
the meta-heuristic algorithm, were saved from the optimisation
for the old DCARP instance. For each historical solution .S;,
we first get a set of building blocks using Function 1 and
then, the path-scanning constructive heuristic is applied to the
obtained building blocks to generate a new solution N.S;. If it
has no repetition of N.S; in the current population, the IN.S; is
added to the current population as one of the initial solutions

Function 1: ConstructBuildingBlocks (S, ER)
Input: The historical solution: S; The task set Er

1 Initial an empty set for building blocks BLOCK = @.

2 Initial a building block: bb, that bb.seq = [ ].

3 for each route v, € S do

4 for i from 1 to 1}, do
5 if tk,i ¢ ER then
6 if bb.seq is not empty then
7 Set bb.head = bb.seq[0].head.
8 Set bb.tail = bb.seq[—1].tail.
9 Set bb.cost equals to the total serving
costs of bb.seq.
10 Set bb.demand equals to the total
demands of all tasks in bb.seq.
11 BLOCK = BLOCK U bb.
12 Re-initialize bb that bb.seq = [ |.
13 continue;
14 else
15 | bb.seq.append(ty. ;).

OLtput: The set of building blocks: BLOCK

for the meta-heuristic algorithm. Finally, if the size of new
population is smaller than the pre-defined population size,
generate corresponding number of solutions by optimisation
algorithm’s initialisation scheme to form a full population.

Algorithm 2: HSAH-OC for DCARP-OC instances
Input: The set of archived solutions: AS; The new
task set: E'r; The population size pop_size.
1 Initialise an empty population POP = &.
2 Set lyop = 0.
3 for each solution S; € AS do
4 BLOCK = ConstructBuildingBlocks (S;,
ER).
5 Apply Path-Scanning algorithm to BLOCK and
obtain a new solution N S;.
6 if NS; ¢ POP then
POP =POPUNS,.
It

9 if I,0p > pop_size then

10 Remove the worst pop_size — [y, solutions from
L POP.

n if l,,, < pop_size then

12 Generate [, — pop_size new solutions by

optimisation algorithm’s initialisation scheme and
L add them into POP.
Output: Population POP

C. HSAH-CT

Different from the DCARP-OC, DCARP instances with
both cost-changing dynamic events and task-changing dy-
namic events (DCARP-CT) should consider the influence of
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deleted tasks and added tasks, especially the added tasks.
The insertion of new tasks has to be considered for the new
DCARP instance. Therefore, the HASH-CT is proposed to
handle the historical solutions, deleted tasks and added tasks
for the DCARP-CT instances. The pseudo-code of HSAH-OC
is presented in Algorithm 3.

Since we have a set of historical solutions in the archive,
we need to filter the tasks that exist in the historical solutions
and the newly added tasks. The newly added tasks are selected
to form a new task set NEr C ERr. Then, for generating new
solutions from the historical solutions, HSAH-OC contains
two different strategies, i.e., building block-based constructive
and insertion strategies, from different perspectives.

The building block-based constructive strategy is similar
to the HSAH-OC that considers the building blocks in the
historical solutions. Additionally, HSAH-CT considers each
new task as an independent building block. Thus, both the
sequence pattern in the historical solutions and the new tasks
are considered for generating the new solution. Then, the path-
scanning algorithm is also used to generate new solutions.

On the other hand, the insertion strategy considers the
complete sequence pattern of the historical solution and inserts
the new task into the historical solutions to obtain new
solutions. For each historical solution, tasks that have been
served or deleted should be deleted first so that we can
obtain an incomplete solution containing information about
the historical solution. Since the minimal number of vehicles
can be obtained according to the instance’s information and
the best solution of an instance usually only contains the
minimal number of required vehicles, we add several empty
routes to the current incomplete solution if the number of
routes in the current incomplete solution is smaller than the
minimal number of required vehicles. Then, the new tasks are
inserted into the current incomplete solution to obtain a new
feasible solution. If no route is feasible for all remaining tasks
when insertion, a new empty route is inserted into the current
solution and then continues to perform the greedy insertion.

After using two different strategies, a new population is
obtained. If its size is greater than the pre-defined population
size pop_size, the best pop_size solutions are selected as
the initial solutions for the meta-heuristic algorithm. On the
contrary, if the new population’s size is smaller than the pre-
defined population size due to removing repeated solutions,
the corresponding number of solutions is also required to be
generated by the optimisation algorithm’s initialisation scheme
to form a complete population.

IV. EXPERIMENTS

We embedded a state-of-the-art meta-heuristic algorithm
into our proposed DO-HSAH framework in this section. The
new algorithm was evaluated in a series of DACRP scenarios.
The empirical results are presented and analysed in this
section.

A. Experimental settings

All experiments are conducted on a series of DCARP
scenarios generated by the simulation system proposed in [8]

Algorithm 3: HSAH for DCARP instances with both
cost and task related events
Input: The set of archived solutions: AS; The new
task set: E'r; The population size pop_size.
Filter the new task set NEr C ER.
/+ Building blcok
Initial an empty building block BLOCKO0 = @.
Initial a building block: bb, that bb.seq = [ ].
for each task tk € NEgr do
Set bb.head = tk.head.
Set bb.tail = tk.tail.
Set bb.cost equals to the service costs of ty.
Set bb.demand equals to the demand of tk.
BLOCKO0 = BLOCKOU bb.

11 Set lpop = 0.

12 Initialise an empty population POP = &.

13 for each solution S; € AS do

14 BLOCK = ConstructBuildingBlocks (.5;,
ERr).

15 BLOCK = BLOCK U BLOCKOQO.

16 Apply Path-Scanning algorithm to BLOCK and
obtain a new solution N S;.

17 if NS; ¢ POP then

18 L POP = POPUNS,.

19

*/

o N N R W N =

-
=]

lpop+ = 1.
20 /* Insertion */
21 Set Wy as the total demands of all tasks in Fg.
22 Set kg = {%W
23 for each solution S; € AS do
24 Delete all served tasks and deleted tasks in S;.
25 Set k as the number of route in S;.
26 if £ < kO then
27 L Add k0O — k£ empty routes into S;.
28 while All new tasks are inserted do
29 if No route is feasible for all remaining tasks
then
30 L Add a new empty route into S;.
31 Find a task and a route with the smallest
increasing cost for the insertion.
32 B Operate the insertion.
33 Obtain a new solution N S;.
34 if NS; ¢ POP then
35 POP = POPUNSE,.
36 | lpopt =1
37 if lpop > pop_size then
38 Remove the worst pop_size — lpop solutions from
L POP.
39 if [,0p < pop_size then
40 Generate [, — pop_size new solutions from
scratch and add them into POP.

O:ltput: Population POP

based on a static CARP benchmark, namely the egl set [15]. 22
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TABLE I: Results of MAENS with HASH and restart strategy in 3 DCARP scenarios only with cost-changing dynamic events.
The value in each cell represents “Mean + Std” over 25 independent runs, and the bold ones denote the better result on the
DCAREP instance based on the Wilcoxon signed-rank test with a significance level of 0.05. The values in the last column
summarise the number of win-draw-lose of HASH strategy versus the restart strategy over 10 different DCARP scenarios.

SCN1

SCN2

SCN3

Mapname W-D-L
HASH RST HASH RST HASH RST
egl-gl-A  0.1244 + 0.0370 0.1943 £ 0.0461 0.1100 £+ 0.0223 0.1472 £ 0.0343 0.2034 +0.0517 0.3037 £ 0.0654 10-0-0
egl-gl-B 0.1358 = 0.0383 0.1989 + 0.0540 0.0907 +0.0149 0.1272 4+ 0.0272 0.0894 + 0.0213 0.1209 £ 0.0258 10-0-0
egl-gl-C ~ 0.1561 + 0.0451 0.3010 4 0.0483 0.1050 + 0.0266 0.1912 4 0.0380 0.1020 = 0.0163 0.2037 4 0.0423 10-0-0
egl-gl-D  0.1047 + 0.0142 0.1971 £ 0.0310 0.0986 + 0.0281 0.2148 £ 0.0360 0.1264 + 0.0308 0.1837 £ 0.0382 10-0-0
egl-gl-E 0.0638 £+ 0.0180 0.1986 £ 0.0417 0.0854 +0.0178 0.1236 £+ 0.0277 0.0707 = 0.0231 0.2147 £ 0.0422 10-0-0
egl-g2-A  0.1455 + 0.0364 0.2338 £ 0.0527 0.0577 £ 0.0225 0.1206 £ 0.0386 0.0823 +0.0186 0.1785 £ 0.0302 10-0-0
egl-g2-B 0.1380 + 0.0352 0.2407 £ 0.0449 0.1007 +0.0375 0.2330 £ 0.0248 0.1362 + 0.0235 0.1657 £ 0.0309 10-0-0
egl-g2-C ~ 0.0803 £ 0.0211 0.2238 4+ 0.0475 0.0878 +0.0191 0.1631 £ 0.0300 0.1014 + 0.0318 0.2237 4+ 0.0424 10-0-0
egl-g2-D  0.1624 + 0.0276 0.3028 £ 0.0444 0.0779 £ 0.0165 0.1405 £ 0.0221 0.0724 = 0.0212 0.2463 £ 0.0279 10-0-0
egl-g2-E 0.0832 + 0.0167 0.1587 4+ 0.0316 0.0822 £+ 0.0245 0.1530 £ 0.0350 0.0938 + 0.0250 0.1979 £ 0.0471 10-0-0
egl-sl-A 0.0474 £ 0.0230 0.0744 £+ 0.0220 0.0347 + 0.0284 0.1536 4 0.0440 0.1313 £0.0350 0.1494 + 0.0330 4-4-2
egl-s1-B 0.0001 £+ 0.0005 0.0042 £ 0.0080 0.1112+0.0365 0.1036 +0.0347 0.0075 + 0.0043 0.0102 £ 0.0038 3-7-0
egl-s1-C 0.1487 4 0.0608 0.0674 +0.0433 0.0201 £ 0.0303 0.0411 £+ 0.0261 0.1237 + 0.0397 0.1794 £ 0.0723 8-1-1
egl-s2-A 0.0584 + 0.0261 0.1063 % 0.0553 0.0450 +0.0162 0.0456 =0.0181 0.0278 £+ 0.0100 0.0386 4 0.0130 8-2-0
egl-s2-B 0.0182 + 0.0067 0.1057 £ 0.1132 0.0086 + 0.0068 0.0217 £ 0.0133 0.1094 +0.0592 0.1024 + 0.0890 5-5-0
egl-s2-C 0.0220 £+ 0.0301 0.0449 £ 0.0362 0.0104 £0.0139 0.0168 £0.0173 0.0183+0.0105 0.0229 + 0.0089 3-6-1
egl-s3-A 0.0254 £0.0151 0.0249 +0.0087 0.1170 + 0.0266 0.1423 £+ 0.0444 0.0827 £ 0.0305 0.0822 1+ 0.0348 6-4-0
egl-s3-B 0.0625 +0.0378 0.1046 £ 0.0532 0.0651 +0.0133 0.0477 +0.0406 0.0012 + 0.0005 0.0010 + 0.0009 7-3-0
egl-s3-C 0.0416 +0.0115 0.0791 £ 0.0252 0.0045 + 0.0119 0.0231 £ 0.0245 0.0641 = 0.0208 0.0759 £ 0.0223 5-4-1
egl-s4-A  0.0178 £0.0215 0.0194 +0.0182 0.0063 +0.0085 0.0060 + 0.0069 0.0728 +0.0267 0.1082 £ 0.0401 5-5-0
egl-s4-B 0.0608 +0.0171 0.1022 4 0.0479 0.0012 £+ 0.0061 0.0083 £+ 0.0150 0.0260 = 0.0125 0.0738 £ 0.0332 5-5-0
egl-s4-C 0.1049 + 0.0105 0.1628 + 0.0618 0.0947 £+ 0.0306 0.0648 +0.0398 0.0863 =0.0136 0.1072 £ 0.0523 4-5-1

different static CARP instances including 10 egl-g instances
with 200 initial tasks and 12 egl-e instances with 100 initial
tasks.

To generate different DCARP scenarios with cost-changing
dynamic events, assign a base cost to each edge in the map
indicating the minimal cost of an edge. Then, when simulating
the cost-changing dynamic events, the deadheading cost of an
edge is determined by the following equation:

b txT, < 0.5
deadheading_cost = ase_costET, P . 3)
base_cost, otherwise

where p € U(0,1) is a random number from a standard
uniform distribution, and r € U(1,C) is also a random from
the uniform distribution with an upper bound value as C'. The
C is set as 5 in our experiments. The equation means that
for each edge in the map, its deadheading cost will become r
times base costs with a probability of 0.5 and its cost also a
probability of 0.5 to become the base costs.

Then, for DCARP instances with task-changing dynamic
events, each remaining task will vanish with a probability of
py = 0.2 when generating new DCARP instances. The newly
added tasks in each new DCARP instance are pre-defined in
each static CARP instance.

We generate 10 different DCARP scenarios independently
for each static CARP instance, and in each DCRAP scenario,
we generate 5 DCARP instances at most. If the number of
tasks in a new DCARP instance is smaller than 20, we also
stop to continue to generate new DCARP instances.

In our experiment, the state-of-the-art DCARP optimisation
algorithm, i.e., the memetic algorithm with extended neigh-
bour search (MAENS) [16] with virtual task strategy, was
used to embed into the proposed DO-HSAH framework. Its

performance was evaluated by comparing the new algorithm’s
performance to the original optimisation algorithm with the
restart strategy. For each DCARP instance, 25 independent
runs are executed. The maximum optimisation time was set to
60s for all problems in our experiments. All programs are
implemented in C language and run on Linux server with
AMD Ryzen Threadripper PRO 3995WX 64-Cores 2.7GHZ.

B. Performance measurement
An average normalised cost for dynamic optimisation [17]
is employed to measure the dynamic optimisation algorithm’s
performance for a DCARP scenario. The normalised cost was

calculated by the following equation:
M

cost_norm = E

m=1

TCh — TChin
TCmax - Tcmzn

“4)

where M is the number of instances in a DCARP scenario,
TC,, is the cost of the best solution of m'” instance in the
DCARP scenario. TC,,,4, and TC,,;, are the maximum and
minimal costs of all obtained best solutions’ costs of m!"
instances in the DCARP scenario over 25 independent runs.
A smaller normalised cost indicates better performance in our
experiments according to Equation 4.

C. Results and Analysis

1) DCARP-OC: The results of MAENS with HASH and
restart strategy in DCARP scenarios only with cost-changing
dynamic events are presented in Table I. The values in each
cell represent “Mean £ Std” over 25 independent runs. For
each DCARP scenario, the Wilcoxon signed-rank test with
a significance level of 0.05 was applied. The significantly
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TABLE II: Results of MAENS with HASH and restart strategy in 3 DCARP scenarios with both cost-changing and task-
changing dynamic events. The value in each cell represents “Mean + Std” over 25 independent runs, and the bold ones denote
the better result on the DCARP instance based on the Wilcoxon signed-rank test with a significance level of 0.05. The values
in the last column summarise the number of win-draw-lose of the HASH strategy versus the restart strategy over 10 different
DCARP scenarios.

Mapname SCNI SCN2 SCN3 WoD.L
HASH RST HASH RST HASH RST
eglgl-A  0.0583+0.0168  0.0833£0.0158 0.0768+£0.0200 0.0852+0.0162 0.1032+0.0193  0.1379+0.0214  4-5-1
eglgl-B 0.0655+0.0153  0.0792+0.0153  0.0543+0.0083  0.0679 +0.0141  0.0571+0.0106 0.0535+0.0121  4-6-0
eglgl-C  0.0669 +0.0192 0.0733+0.0156 0.0712+0.0113  0.0793+0.0153  0.0685+0.0180  0.0903+0.0238  4-4-2
eglgl-D  0.0536 +0.0106  0.0788+0.0150  0.0843+£0.0230  0.0985+0.0212  0.0794+0.0083 0.0730+0.0149  4-4-2
eglgl.E  0.0343 £ 0.0097 0.0370 £ 0.0088 0.0490 +0.0089  0.1054 +0.0304  0.0661+ 0.0313 0.0587 +0.0225  5-5-0
eglg2-A  0.0545+0.0120  0.0866 £0.0167  0.1166+0.0220 0.1228+0.0198 0.0638 £ 0.0116  0.0783+£0.0124  6-4-0
eglg2B  0.0519+0.0127  0.0908£0.0131  0.0599+£0.0103  0.0785+0.0179  0.0911+0.0179 0.0935+0.0172  8-1-1
eglg2-C  0.0729+0.0136 0.0709 £0.0148 0.0472+0.0096  0.0876+0.0142  0.0679 £0.0127  0.0856 £ 0.0138  5-4-1
eglg2-D  0.0477+0.0250 0.0518 £0.0148 0.0909 +0.0200 0.0916 +£0.0134  0.0473£0.0140  0.0788+£0.0138  6-4-0
eglg2-E  0.0932+0.0156  0.1088+0.0213  0.0775+0.0175  0.1081+0.0146  0.1003+0.0178  0.0859 +0.0162  8-1-1
eglsl-A  0.0430£0.0215  0.0581£0.0198  0.0275+0.0129 0.0288 +0.0120  0.0226 £ 0.0055 0.0243 £ 0.0045  2-62
eglsl-B 0.0260+0.0105  0.0351+0.0104 0.0333+0.0140 0.0368 £0.0110 0.0711+0.0149 0.0763 +0.0198 262
eglsl-C  0.0222+0.0074  0.0446 £0.0280  0.0570+0.0279  0.1119£0.0265  0.0424+0.0130  0.0578 £0.0177  4-6-0
egls2A  0.0151+0.0112 0.0182+0.0125 0.0694+0.0181  0.0900 +£0.0177  0.0290 £ 0.0146  0.0485+0.0181  5-5-0
egls2B  0.1382£0.0366  0.1020 +0.0547 0.0291+0.0091 0.0266 = 0.0097 0.0410+0.0122 0.0470 +0.0165  4-4-2
egls2C  0.0821£0.0208  0.0641+0.0200 0.0257 £0.0187  0.0433£0.0284  0.0198 £0.0078 0.0182+0.0074  2-5-3
egls3-A  0.0349£0.0159  0.0499+0.0242  0.0872+0.0311 0.0890 +0.0354 0.0566 £ 0.0142 0.0597 +£0.0310  5-4-1
egls3-B 0.0689+0.0246 0.0753+0.0204 0.0661+0.0177 0.0663 £0.0149 0.0310+0.0165  0.0688+0.0152  3-7-0
egls3-C 0.0563+0.0282 0.0424+0.0168 0.0389 +£0.0136  0.0461£0.0117  0.0351+0.0151 0.0318 +£0.0156  3-7-0
eglsd-A  0.0395+0.0119  0.0522+0.0180  0.0628 +£0.0161  0.0860 =0.0160  0.0472+0.0144 0.0569 +0.0175  5-4-I
egls4-B  0.0433+£0.0111 0.0447+0.0113  0.0952+0.0169  0.0848 £ 0.0175 0.0326 +£0.0093 0.0359 +0.0143  2.7-1
egls4-C 0.0553+0.0105 0.0572+0.0135 0.0446 £0.0176 0.0623 £ 0.0393 0.0644+0.0164 0.0661 +0.0297  3-7-0

better results are highlighted with bold fonts in the table.
Due to the page limitation here, only 3 DCARP scenarios
are presented in Table I. However, the number of win-draw-
lose of HASH strategy versus restart strategy over 10 different
DCARP scenarios are presented in the last column of Table I.

From the results of Table I, we can find that the HASH
strategy outperforms the restart strategy in all DCARP sce-
narios of egl-g maps which has more number of tasks. In
the DCARP scenarios generated from egl-e maps, the HASH
strategy outperforms the restart strategy or has a similar per-
formance compared with the restart strategy in most scenarios.
The restart strategy only outperforms the HASH in very few
DCARP scenarios.

The difference in performance between HSAH and restart
strategy is probably because of the number of tasks in the
DCAREP instance since egl-g maps have much more tasks
than egl-e maps. The HSAH could perform significantly better
in the DCARP instance with more tasks. To validate such a
hypothesis, we define a performance gap as follows:

RST HSAH

&)
where cost_norm®fST and cost_norm represent the
normalised cost of the restart strategy and HSAH strategy,
respectively in each DCARP instance. Then, we calculate the
average performance gap over 25 independent runs and the
number of tasks for all DCARP instances, which was presented
in Figure 2.

From 2, it is clear that when the number of task increases,
the performance gap between the HSAH strategy and restart
strategy become large, indicating that the HSAH strategy
promotes the dynamic optimisation much more on instances

gap = cost_norm — cost_norm

RS HSAH

25 50 75 100 125 150 175
Task Num

Fig. 2: The relation between the performance gap and the
number of tasks for all DCARP instances.

with more number of tasks. For instances with a smaller
number of tasks, all instances are too easy for the algorithm,
such that dynamic optimisation is hard to benefit a lot from
the adapted solutions. On the other hand, for instances with a
bigger number of tasks, all instances are hard for the algorithm,
and the adapted solutions can help the algorithm locate a better
search space and obtain a better solution within a limited time.

However, it still has some outliers in Figure 2, and these
outliers almost concentrate in the range of [60,80] in the
figure. Only a few points are outliers. For outliers with large
gap values, the adapted solutions are much closer to the
final best solutions, which helps a lot in finding the final
best solution. Moreover, for instances with small values, it is
probably because of the search diversity. The adapted solutions
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Fig. 3: The evolved curves of MAENS with HASH (blue lines) and restart (orange lines) strategies in 10 DCARP scenarios
only with cost-changing dynamic events in maps of egl-gl-A (a) and egl-s1-C (b).

are similar to each other, which decreases the diversity and is
easy to make the algorithm trap in the local optima in some
instances.

Besides, we also plotted the convergence curves for
MAENS with HSAH and restart strategies to investigate the
influence of the HSAH strategy on the algorithm’s convergence
performance. 20 convergence curves are provided in Figure
3 including 10 scenarios of egl-g/-A (Figure 3a) and 10
scenarios of egl-sI-C (Figure 3b).

From 3, it is clear that the HSAH strategy can also pro-
mote the convergence speed of the dynamic optimisation for
DCAREP instances with both cost-changing and task-changing
dynamic events.

2) DCARP-CT: The results of MAENS with HASH and
restart strategy in DCARP scenarios with both cost-changing
and task-changing dynamic events are presented in Table II.
The values in each cell represent “Mean + Std” over 25
independent runs. For each DCARP scenario, the Wilcoxon
signed-rank test with a significance level of 0.05 was applied.
The significantly better results are highlighted with bold fonts
in the table. Due to the page limitation here, only 3 DCARP
scenarios are presented in Table II. However, the number of
win-draw-lose of HASH strategy versus restart strategy over

10 different DCARP scenarios are presented in the last column
of Table II.

From the results of Table II, we can find HASH strategy
outperforms the restart strategy or has a similar performance
compared with the restart strategy in most scenarios. The
restart strategy only outperforms the HASH in very few
DCARP scenarios.

Besides, we also plotted the convergence curves for
MAENS with HSAH and restart strategies to investigate the
influence of the HSAH strategy on the algorithm’s convergence
performance. 20 convergence curves are provided in Figure
4 including 10 scenarios of egl-gl-A (Figure 4a) and 10
scenarios of egl-sI-C (Figure 4b).

From Figure 4, it is very clear that the large gap only
exists in the first DCARP instance of a DCARP scenario.
In the remaining DCARP instances, the HSAH’s performance
is always similar to the restart strategy. The first reason is
probably that the historical solutions from the static CARP
are obtained with sufficient computational resources, while
the historical solutions for the remaining DCARP instances
are from the optimisation process of the old DCARP instance,
which does not have computational resources. On the other
hand, in the latter DCARP instances of a DCARP scenario,
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Fig. 4: The evolved curves of MAENS with HASH (blue lines) and restart (orange lines) strategy in

10 DCARP scenarios

only both cost changing and task-changing dynamic events in maps of egl-gl-A (a) and egl-s1-C (b).

the number of tasks usually decreases a lot because many
tasks have been served. It makes the DCARP instance easy
to solve, and the initialisation solutions do not greatly impact
the optimisation’s performance.

V. CONCLUSION

In this project, we focused on the optimisation for the
DCARP scenario, which considers the dynamic events during
the deployment of the CARP solution. In the existing work for
DCAREP, the re-optimisation from scratch is usually applied
to solve the DCARP scenario. However, since the DCARP
instances in a DCARP scenario are generated based on the
last DCARP instances, and many similarities exist between
them, the information on optimisation for the old DCARP
instances can be used to promote the dynamic optimisation for
new DCARP instances. Therefore, in this work, we proposed a
historical solution adaptation heuristic-based dynamic optimi-
sation framework (DO-HSAH) to help optimise the DCARP
scenario. The proposed DO-HSAH includes two strategies,
i.e., HSAH-OC and HSAH-CT, to handle the DCARP in-
stances generated from the only cost-changing dynamic events
or both with cost-changing and task-changing dynamic events
separately.

In the empirical studies, we embedded a state-of-the-art
dynamic optimisation algorithm, i.e., MAENS, into the DO-
HSAH framework and evaluated it on a series of DCARP
scenarios. The performance of DO-HSHA was compared with
the restart strategy in our experiment. The experimental results
demonstrated that the adapted historical solutions indeed pro-
mote the dynamic optimisation for CARP and also lead to a
fast convergence.

Currently, we directly adapted the historical solutions to
the new DCARP instances to promote dynamic CARP op-
timisation. Its performance is still similar to or even worse
than the restart strategy, especially for DCARP instances with
task-changing dynamic events. Therefore, in the future, we
will focus on extracting more indirect experience, such as
constructive rules, from historical solutions to generate higher-
quality solutions for new DCARP instances.
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