
IEEE Computational Intelligence Society Distinguished Lecturer Program 

Speaker: Saman K. Halgamuge, The University of Melbourne, Australia 

Inviting Chapter: IEEE Computational Intelligence Society Western Australia Chapter 

Date: 9 May 2021 

Time:  9am (Perth time) 

Number of Participants: 85 People 

Lecture Title: Democratisation of Deep Learning: Self Growing Neural Network Architectures   

Abstract:  

In the past decade, Deep Neural Networks (DNNs) based on supervised learning have 
revolutionized various fields including Computer Vision, Natural Language Processing, 
Bioinformatics and Robotics. Behind this revolution is the increasing demand for 
computational power, with reportedly the amount of computing used in the training of 
largest manually designed DNN models doubling every 3.5 months since 2012, much faster 
than the two-year doubling period of Moore’s law in electronic hardware advancement. 
While continually meeting such a demand is unsustainable and unlikely, a need arises for 
significant innovations in discovering or designing DNN architectures and training procedures 
that are significantly more efficient and demand much less computing power, i.e., low cost. 
Such innovations could also benefit the wider use of DNNs by researchers without expertise 
in DNN design in many new areas including in energy, environmental and social sciences and 
arts and humanities. 
To reduce the development cost of DNNs, a recent idea proposed is to automate the DNN 
design, which leads to an emerging field called automatic machine learning (Auto- ML). 
However, this idea was previously applied by the author on shallow Neural Networks using 
Self generation/growing [1-3]. Existing Auto-ML methods have attempted to optimize every 
step of the data analysis pipeline including data preparation, feature engineering, model 
generation, training, and evaluation. Among them, Neural Architecture Search (NAS) methods 
explicitly find DNN architectures for a given supervised learning task. This is achieved by 
encoding the candidate architecture as a solution in some search space and treating the 
architecture design as an optimization problem. Growing Neural Network Architectures 
instead of “searching for the best” has been our strategy to this problem. 
 
Our research shows that Self Growing Neural Networks can be used both in Unsupervised 
Learning and Supervised Learning. In the former, they can be applied to continuous data 
streams. In the latter, our techniques also lead to interpretable architectures. We also refer 
to recent work jointly published with Dr Damith Senanayake, Dr Wei Wang and others [3-6]. 
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